Silicon induces changes in the antioxidant system of millet cultivated in drought and salinity

Adriana Basilio-Apolinar1, Luis Eugenio González-de la Vara2, J. Gabriel Ramírez-Pimentel1, Cesar L. Aguirre-Mancilla1, Gabriel Iturriaga1, Jorge Covarrubias-Prieto1, and Juan Carlos Raya-Pérez1*
In recent years, benefits of silicon in plants grown under stress conditions have been reported. The objective of the research was to evaluate the response at a physiological and biochemical level of millet (Panicum miliaceum L.) to fertilization with Si under controlled stress conditions during vegetative stage, drought, salinity and the control (without stress). After stress, shoot and root length, DM content, peroxidase (POD) and catalase (CAT) activity, proline, H2O2 and Si content, seed yield and germination percentage were measured. Drought and salinity significantly decreased shoot (24%, 21%) and root (30% in drought) development, weight (36%, 29%) and seed number (30%, 21%) per plant. Application of Si significantly increased seed number (289) and seed weight (1.20 g) in the control plants, increased seed weight (0.83 g) in plants under drought and germination percentage (99%) in plants under salinity. Silicon increased 2.1 times POD activity in drought, 1.4 times in salinity and control plants; CAT activity increased 10.6 times in salinity and 1.7 times in control plants. Silicon decreased 10 times proline levels in plants under drought; in salinity and control, proline content increased 1.3 times with Si and H2O2 levels decreased in these treatments. The Si content in plants fertilized with Si under drought, salinity and control was 6%, 3.54% and 5.45% respectively. In conclusion, Si can improve plant stress tolerance by stimulating POD and CAT activity, and regulating proline levels, allowing it to improve the production and physiological seed.
Keywords: Catalase, Panicum miliaceum, peroxidase, proline, seed.
1Tecnológico Nacional de México/IT Roque, km 8 Carretera Celaya-Juventino Rosas, Celaya 38110, Guanajuato, México. *Corresponding author (juraya@itroque.edu.mx).2Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Unidad Irapuato, Libramiento Norte Carretera Irapuato León km 9.6, Irapuato 36821, Guanajuato, México.